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Abstract—The increasing demand for smarter yet more ef-
ficient indoor spaces necessitates moving towards advanced
technologies, such as Internet of Things architectures, to allow
further integration to our physical world. In this work, we intro-
duce a Bluetooth Low Energy-based infrastructure for location-
aware buildings, along with a full-scale real-subject trial. The
trial was undertaken with students in our engineering building
at NC State, under IRB approval. Our focus is on showing
a proof-of-concept of deploying location-aware infrastructure
through experimentally collecting data able to facilitate building
management and user localization. We examine a multi-floor
environment installation and analytically prove how viable and
economic our solution is to equip future intelligent facilities.

I. INTRODUCTION

In the past, as long as a building was appropriately cooled
or heated and sufficiently secure, it was considered to fulfill
its purpose; however, that is no longer the case. Nowadays,
the limits are pushed beyond managing temperature, door-
locks and general security, to go as far as reducing energy
costs, preventing physical disasters, asymmetric threats and
improving the life quality of occupants. To accomplish that,
buildings must become smarter, especially in the sense of
being able to monitor location and movement inside the
facility.

Intelligent spaces are physical environments equipped with
computational infrastructure and sensing capabilities that ex-
hibit a high form of interaction [1]. Such smart spaces should
be able to autonomously acquire knowledge of their users and
use it to improve their overall experience in the space. ”Smart”
is defined not only by the various services offered but also by
the broad use of various sensing systems located around the
area. Such sensing capabilities refer to collecting space state
data such as environmental conditions, as well as the ability
to track the user’s physical location, identity and preferences.
Therefore, in order for a smart space to be productive, it must
support the two rising trends of the digital age: connectivity
and big data analytics, focused inwards to ensure efficient
operation.

Heading towards this world of smarter spaces, the Internet
of Things (IoT) is essential in this transformation of enterprise
and residential facilities into ”intelligent” ones. The Internet
of Things is defined as the ability of objects (things) to be
interconnected through the Internet [2]. One of the services
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Fig. 1. Location-aware intelligent building model

an IoT-equipped building has to offer is microlocation, which
is the precise localization of an entity [3]. Many approaches
concerning microlocation have been developed.

Infrastructure-less microlocation solutions do not require
any pre-installed equipment on the facility. These systems
utilize signals from inertial measurement units (IMUs), namely
accelerometers, gyroscopes or magnetometers to estimate the
user’s position [4], [5]. On the other hand, infrastructure-
based solutions rely on wireless technologies such as WLAN,
Bluetooth, Radio Frequency Identification (RFID), or ultra-
sound. Such systems aim to use the building’s existing infras-
tructure to estimate the user’s microlocation using wireless
signal strengths and triangulation techniques [3], [6]. Most of
these solutions incorporate systems where the moving user
carries equipment (e.g. a smartphone) that acts as a scanner
receiving signals from fixed transmitters [7], [8]. However,
the inverse strategy that uses a movable-beacon fixed-scanner
approach is also encountered for case-specific applications [9],
[10]. Despite the numerous approaches proposed, each one
of them comes with several challenges that make the indoor
localization problem far from solved [3], [11].

In this paper we present a Bluetooth Low Energy (BLE)-
based infrastructure for location-aware smart buildings, along
with a large scale realization of the system inside the NC
State University’s ECE building. While a lot of published work
is focusing on moving-scanner fixed-transmitter systems, we
present and test a system that inverts this logic. Our proposed
system consists of fixed scanners deployed on the intelligent



TABLE I
DIFFERENT COMPONENTS AND THEIR FUNCTIONALITY

Component Functionality

Gimbal Beacon Series 10 BLE Beacon packet transmitter

Raspberry Pi 3 BLE Beacon scanner, Internet accessability

Server Data Management, MQTT Broker,
Web Application Host

Database Data storage

Web Application User Interface, Raspberry Pi Management,
Data Analytics

building while moving users are equipped with beacons that
constantly transmit BLE advertisement packets fingerprinting
their location. The general aim of this project is to describe
an easily deployable and practical smart building infrastructure
able to generate data that can be used not only for tracking
the behavior of a specific user, but also detecting the state of
the facility at any given time.

Figure 1 presents our schematic model for such a location-
aware building. In this work, we also present a series of
preliminary results that utilize the data collected by the one-
month-long IRB trial. Most existing work on microlocation
experiments have been conducted in restrained environments
and on a small scale. We consider our large scale deployment
of scanners and BLE beacons in a living environment, such
as a university, as an attempt that can be the beginning for
further research.

This paper is organized as follows: Section II presents an
overview of the proposed system. Section III describes the
large scale experiment conducted. Section IV discusses sys-
tem’s signal strength performance and range. The preliminary
results are presented in Section V. Finally, we discuss future
work in Section VI and conclude this paper in Section VII.

II. SYSTEM OVERVIEW

A. Approach

Our proposed design aims for an easily deployable smart
building infrastructure able to generate data that can be used to
provide facility management and microlocation. To that end,
our solution’s goal is to be cheaply scalable with minimal
infrastructure changes.

As discussed previously, the dominant approach in most
relevant works is moving-scanner fixed-beacon systems that
require a scanner for each user. In most cases these devices
are smart-phones already equipped with BLE and Internet
connectivity. While this seems a widely accepted solution, it
has a significant impact on device power autonomy.

On the contrary, the moving-beacon fixed-scanner approach
that we propose allows stationary low-cost scanners plugged
into a power source, unconfined by any battery life standards.
Access to WiFi on the building’s secure network is guaranteed
and the provision of BLE beacons to the masses is considered
a small cost. A realization of this system is also possible using
smart-phones acting as beacons. This would require a less
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Fig. 2. System Architecture

resource-demanding phone application with minimal impact
on battery life.

In our movable-beacon fixed-scanner system, primary cost
factors arise from scanner devices, BLE beacons, data trans-
mission and analytics. In regards to scanner devices, two
product lines were compared due to their cost similarities:
Raspberry Pi and Intel Edison. While both devices provide
similar capabilities, we found the Raspberry Pi 3 to be superior
due to lower costs per device and on-board WiFi and Bluetooth
Low Energy modules. As long as the beacon provided reason-
able accuracy, allowed iBeacon configuration, and provided a
one-month battery life, it was considered a feasible solution.
Gimbal Beacon Series 10 and Estimote iBeacon products were
compared, with Gimbal showing to be a much more cost
effective solution.

B. Architecture

There are five different components in our system as shown
in Table I and Figure 2. At a configured rate, iBeacons [12],
transmit unique packets. Depending on the transmission power
configuration of a beacon, it can transmit data to further
distances dependant on the obstacles within the environment.

The beacons within the system are configured to broadcast
under the same 16-byte universally unique identifier (UUID)
[13]. Each beacon is distinguished by a 4-byte identifier
embedded in the iBeacon advertisement packet. Beacon trans-
mission rate was set to 1 Hz, transmission power to 0 dBM,
and our antenna was set to propagate in an omni-directional
manner. These settings provide best propagation results and
are befitting for a one-month battery lifetime usage.



Fig. 3. BLE scanner locations in multiple floors

The Raspberry Pi is essentially the back bone of our
system; the device scans for BLE beacons carried by various
users. On top of this, it is programmed to correctly scan
only for our iBeacons such that no other beacon or BLE
advertising packets are accepted. Raspberry Pi development
also includes functionality to promote facility management and
self-sustained system reliability checks.

After processing of incoming beacon packets, Raspberry Pis
forward the information to the local Linux server for further
processing and storage via a secure WiFi network. Utilizing
the MQTT (Message Queuing Telemetry Transport) protocol
as discussed in [14], Raspberry Pi devices are programmed as
clients to the MQTT broker hosted by the server. MQTT is a
secure, lightweight M2M communication protocol which is ef-
ficient for IoT applications. The server, along with hosting the
MQTT broker service, performs data management processing
on the incoming data; namely, data is validated and stored into
the various tables in the MariaDB SQL database.

Moreover, a web application is provided for a dashboard-
like view into real-time system updates including Raspberry

Pi status and recent incoming readings. This web application
can be further developed to host real-time facility management
applications.

C. Operation
Data path and data management in such a system surely

affects its real-time ability, performance, and features. In our
design, we followed two approaches for data processing.

The first approach is to consistently forward all the received
signal strength indicator (RSSI) values received by beacon
scanners to our central server. While this approach is intuitive,
it requires high data throughput to the cloud. This RSSI Report
approach in data management allows the possibility of our two
main required functionalities: facility management and user
microlocation.

Our second implementation rather utilizes local processing
power to manage data, while also yielding less network traffic.
We followed a Check-In/Check-Out approach where each
beacon scanner device manages a list of current beacons
that are in its vicinity. On a beacon’s initial entry of the
scanner’s vicinity a ’time-in’ timestamp is attached. While a
user maintains their locality to the beacon scanner, a ’last-
seen’ timestamp is continually monitored and updated. As a
user exits the beacon scanner’s area, and packets no longer are
received by the beacon scanner, an event packet is finalized and
sent off to the cloud. Here, a time period of thirty seconds is
used such that the user exit event is assured. A downfall of this
Check-In/Out approach is that it inhibits precise microlocation
functionality, as RSSI values are no longer sent to the cloud.

III. IRB TRIAL - EXPERIMENT

In order to present a realization of the proposed solution in
realistic conditions, we performed an extended real subject
experiment. The trial was approved by both the NC State
Department of Electrical and Computer Engineering, and
the Institutional Review Board for the Protection of Human
Subjects in Research (IRB).

Regarding the deployment of our system, thirty Raspberry
Pi scanners were attached in three floors within NCSU Cen-
tennial Campus - Engineering Building II, as shown in Figure
3. The goal was to distribute beacon scanners symmetrically
throughout the building and according to their estimated cov-
ering range, as discussed in Section V. However, restrictions
due to power outlet locations limited our choices and enforced
final scanner location. Moreover, due to building regulation
restrictions, some scanner devices were placed approximately
2 feet from the ground. To achieve an unobstructed signal
propagation in overcrowding cases we propose placement of
scanners near or attached to ceilings.

While abiding by IRB privacy rules, we were able to gather
basic participant information including gender, age, major, and
year of education. Although students accounted for most of the
participants in our trial, faculty and staff also took part. For
beacon distribution, each user attached their beacon to their
backpacks or keys, whichever they had on their person more
often. The trial lasted from September 15 until October 17,
2016 and we successfully recruited 46 participants.



IV. MEASUREMENTS

Before the full-scale live-subject trial of the system at
the ECE department’s spaces, we conducted a series of
experiments in order to model the received signal strength
performance of our configuration as well as examine possible
interference events due to RF signal characteristics. In fact, we
wanted to estimate the radius covered by each BLE-scanner
and examine the possibility of BLE advertisement packets
being picked up by scanners positioned in other floors.

The first experiment investigates the relation between RSSI
and distance. Theoretically, the signal propagation model com-
monly used to relate RSSI to distance, d, is the log-distance
path loss model:

Pd = Pd0
− 10 γ log(

d

d0
) (1)

where:
• Pd is the RSSI (dBm) at distance d from the source
• Pd0 is the RSSI (dBm) at the reference distance d0 from

the source
• γ is the path loss exponent which depends on the prop-

agation channel
Therefore, when unknown, d can be calculated using the
expression:

d = d0 · 10
Pd0

−Pd
10 γ (2)

Reference distance d0 is selected such that it belongs to the
antenna’s far-field.

The experimental setup consists of a single iBeacon along
with a single Raspberry Pi scanner mounted on a hallway wall
at the height of approximately 1.6 meters. Measurements were
executed at 32 different user-scanner distances varying from
0 to 10.5 meters by averaging all RSSI values received by
the scanner over a period of 30 seconds. During the first test,
we examined beacon performance in an unobstructed line-of-
sight (LoS) between the scanner and beacon, while varying
transmission power configurations. Figure 4 shows the RSSI
values received at different distances for beacon transmission
powers of 0, -6 and -12 dBm. For transmission powers lower
than 0 dBm we observed the intermittent loss of advertisement
packets after 9 meters, so in order to expand the reach and
reliability of an iBeacon BLE packet, we used TX power of
0 dBm for all beacons in the trial.

During the second test, the beacon produced advertising
signals at 0 dBm transmission power, while the LoS with the
scanner was obstructed by human bodies. Figure 5 shows RSSI
values for this test along with a comparison with the case of
unobstructed LoS at the same TX power level.

In both Figures 4 and 5, the distance and RSSI measure-
ments were used to perform a curve fitting according to the
propagation model described by Eq. 1. The results demonstrate
that the log-distance path loss model is suited to describe BLE
signal propagation in indoor environments. This analysis can
also be used to determine optimal scanner placement inside a
smart building in order to cover all spaces with a minimum
beacon transmission power choice.
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TABLE II
FLOOR BLEEDING

Percentage of advertising packets received [%]

Test
Test

Floor
Floor 1 Floor 2 Floor 3

Total Floor
Bleeding

1 1 100 0.00 0.00 0.00

2 1 98.74 0.63 0.63 1.26

3 2 2.26 90.94 6.79 9.06

4 2 3.69 91.90 4.41 8.10

5 3 0.00 0.18 99.82 0.18

6 3 0.00 0.91 99.09 0.91

Average − − − − 3.25

The second set of experiments were performed by a user
equipped with a single iBeacon, while moving in the building
after all scanners were deployed and fully operational as shown
in Figure 3. Test beacons were configured as described in
Section III. For each test, a user followed a predefined point-A



to point-B path. In many tests, we examined events where a
scanner from another floor picked up the advertisement packet.
We refer to these events as floor bleeding events. Table II
shows the results of the aforementioned experiment.

V. PRELIMINARY TRIAL RESULTS

Based on the description of the proposed system in the
preceding sections, it is obvious that the data generated by
our system can be exploited in parallel for two basic smart
building functions. The first function focuses on the building
itself. The extracted data can be used to perform real-time
facility management and monitor the smart building state at
all times. The second function is user microlocation as the
provided architecture can be used to locate a user within a
confidence interval. In this section we focus on the building
management utility of the proposed solution as it is practically
demonstrated by the one-month-long real subject trial and the
data yielded.

The first measurement that can be extracted from the
system’s generated data is building activity over time. As
an activity metric we use the total amount of advertisement
packets received by the Raspberry Pi scanners installed in

Fig. 6. Overall Building Activity Per Day
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the facility. Figure 6 shows a heatmap visualizing the overall
building activity for each day of the experiment. Figure 7
compares the average building activity per hour over weekdays
and weekends. We can observe that clear conclusions can
be drawn regarding the differences in crowd activity during
weekdays and weekends and between the respective hours of
each period.

Apart from the chronological analysis of the activity, re-
ceived advertisement packets can be used to extract the most
visited places inside the facility. Figure 8 shows the mean
and standard deviation of space activity during weekdays as
captured by each Raspberry Pi scanner.

Finally, as discussed in Section III we implemented two
approaches for processing the BLE advertisement packets
received by each scanner. Figure 9 compares these two ap-
proaches in terms of total daily messages sent to the server
by the BLE scanners. The RSSI Report approach generated
a significantly larger amount of data than the Check In/Out
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approach and results to greater network traffic to over two
orders of magnitude. Therefore, when only building manage-
ment logic is required, the second approach is more efficient
in terms of network resource management.

VI. DISCUSSION AND FUTURE WORK

As seen above, our proposed system can generate reliable
facility metrics regarding user activity density and building
space usage. Our preliminary system measurements character-
ize the BLE signal propagation. Such modeling can be uti-
lized along with case-specific algorithms to estimate distances
between beacons and scanners. Moreover, our measurements,
after inspection of the data, revealed floor bleeding events
where advertisement packets were picked up by scanners
located in different floors in relation to the transmitting beacon.
These events were limited to an average percentage of 3.25%
whose main factor was found to be movements at the middle
floor of the trial building, as suggested by Table II. These
events can be averted by carefully adjusting the scanners’
locations and performing RSSI calibration techniques. Also,
an important variable to this phenomenon is the beacon TX
power. A possible reduction of this setting to lower levels
would result to a decrease of the floor bleeding phenomenon
and consequently provide extra beacon battery life.

As future work, we consider developing a microlocation
algorithm based on the system’s overall moving beacon-fixed
scanner approach. Extra care will be given to cases where users
change floors using stairs with dedicated scanners located in
predetermined positions. This user localization would allow
them to interact with managed resources inside the environ-
ment. Moreover, this functionality would allow the smart space
to efficiently use its power-based resources and even utilize
user’s microlocation to plan actions during emergency cases.

Concerns should also exist in terms of privacy for the facil-
ity occupants and security of the building itself. Even without
a complex microlocation algorithm, anyone with access to
the back-end system or anyone who can pick up the beacon
broadcasts will be able to infer the location and activities
of building occupants with fair accuracy. Plus, the presence
or absence of BLE broadcasts can give insight into whether
a building is occupied or not, raising security concerns. As
future work, we consider developing security features and
vulnerability countermeasures to mitigate these problems.

Finally, the installation of such a sizable system that hosts a
substantially large number of people every given day, should
take into account the impact on the facility’s network per-
formance. The architecture of the proposed system which is
based on active moving beacons carried by each user, creates
a significant amount of network traffic which is proportional
not only to user’s number but also to their location inside the
building.

VII. CONCLUSION

In this paper we introduced a BLE-based smart space
infrastructure. The system is based on a moving beacon-fixed
scanner approach that can generate data to be utilized both for

building management and user microlocation purposes. More-
over, we performed a large scale realization of the system via
a real subject trial. Thirty Raspberry Pi-based BLE scanners
were deployed on three floors of the NC State Engineering
Building II, while 46 users were given a BLE iBeacon to
carry with them for the one-month trial period. As a case
study, this experiment was of particular interest as it yielded
a large number of live data utilizing a BLE platform. We
examined the system’s response to the simultaneous three floor
installation and presented the results. Finally, our preliminary
results of the IRB approved trial yielded an accurate and useful
building state analysis. These proved our proposed system to
be a reliable solution able to equip a future smart facility. Our
results can be used as a basis to further develop our solution
and add extra functionality.
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